Abstract:While passive agents merely follow instructions, proactive agents align with higher-level objectives, such as assistance and safety by continuously monitoring the environment to determine when and how to act. However, developing proactive agents is hindered by the lack of specialized resources. To address this, we introduce ProAct-75, a benchmark designed to train and evaluate proactive agents across diverse domains, including assistance, maintenance, and safety monitoring. Spanning 75 tasks, our dataset features 91,581 step-level annotations enriched with explicit task graphs. These graphs encode step dependencies and parallel execution possibilities, providing the structural grounding necessary for complex decision-making. Building on this benchmark, we propose ProAct-Helper, a reference baseline powered by a Multimodal Large Language Model (MLLM) that grounds decision-making in state detection, and leveraging task graphs to enable entropy-driven heuristic search for action selection, allowing agents to execute parallel threads independently rather than mirroring the human's next step. Extensive experiments demonstrate that ProAct-Helper outperforms strong closed-source models, improving trigger detection mF1 by 6.21%, saving 0.25 more steps in online one-step decision, and increasing the rate of parallel actions by 15.58%.
Abstract:Large multimodal reasoning models solve challenging visual problems via explicit long-chain inference: they gather visual clues from images and decode clues into textual tokens. Yet this capability also increases hallucinations, where the model generates content that is not supported by the input image or the question. To understand this failure mode, we identify \emph{reasoning drift}: during clue gathering, the model over-focuses on question-irrelevant entities, diluting focus on task-relevant cues and gradually decoupling the reasoning trace from visual grounding. As a consequence, many inference-time localization or intervention methods developed for non-reasoning models fail to pinpoint the true clues in reasoning settings. Motivated by these insights, we introduce ClueRecall, a metric for assessing visual clue retrieval, and present ClueTracer, a training-free, parameter-free, and architecture-agnostic plugin for hallucination suppression. ClueTracer starts from the question and traces how key clues propagate along the model's reasoning pathway (question $\rightarrow$ outputs $\rightarrow$ visual tokens), thereby localizing task-relevant patches while suppressing spurious attention to irrelevant regions. Remarkably, \textbf{without any additional training}, ClueTracer improves all \textbf{reasoning} architectures (including \texttt{R1-OneVision}, \texttt{Ocean-R1}, \texttt{MM-Eureka}, \emph{etc}.) by $\mathbf{1.21\times}$ on reasoning benchmarks. When transferred to \textbf{non-reasoning} settings, it yields a $\mathbf{1.14\times}$ gain.
Abstract:Pixel-wise capabilities are essential for building interactive intelligent systems. However, pixel-wise multi-modal LLMs (MLLMs) remain difficult to scale due to complex region-level encoders, specialized segmentation decoders, and incompatible training objectives. To address these challenges, we present SAMTok, a discrete mask tokenizer that converts any region mask into two special tokens and reconstructs the mask using these tokens with high fidelity. By treating masks as new language tokens, SAMTok enables base MLLMs (such as the QwenVL series) to learn pixel-wise capabilities through standard next-token prediction and simple reinforcement learning, without architectural modifications and specialized loss design. SAMTok builds on SAM2 and is trained on 209M diverse masks using a mask encoder and residual vector quantizer to produce discrete, compact, and information-rich tokens. With 5M SAMTok-formatted mask understanding and generation data samples, QwenVL-SAMTok attains state-of-the-art or comparable results on region captioning, region VQA, grounded conversation, referring segmentation, scene graph parsing, and multi-round interactive segmentation. We further introduce a textual answer-matching reward that enables efficient reinforcement learning for mask generation, delivering substantial improvements on GRES and GCG benchmarks. Our results demonstrate a scalable and straightforward paradigm for equipping MLLMs with strong pixel-wise capabilities. Our code and models are available.
Abstract:Personalized digital health support requires long-horizon, cross-dimensional reasoning over heterogeneous lifestyle signals, and recent advances in mobile sensing and large language models (LLMs) make such support increasingly feasible. However, the capabilities of current LLMs in this setting remain unclear due to the lack of systematic benchmarks. In this paper, we introduce LifeAgentBench, a large-scale QA benchmark for long-horizon, cross-dimensional, and multi-user lifestyle health reasoning, containing 22,573 questions spanning from basic retrieval to complex reasoning. We release an extensible benchmark construction pipeline and a standardized evaluation protocol to enable reliable and scalable assessment of LLM-based health assistants. We then systematically evaluate 11 leading LLMs on LifeAgentBench and identify key bottlenecks in long-horizon aggregation and cross-dimensional reasoning. Motivated by these findings, we propose LifeAgent as a strong baseline agent for health assistant that integrates multi-step evidence retrieval with deterministic aggregation, achieving significant improvements compared with two widely used baselines. Case studies further demonstrate its potential in realistic daily-life scenarios. The benchmark is publicly available at https://anonymous.4open.science/r/LifeAgentBench-CE7B.




Abstract:Direction of Arrival (DOA) estimation serves as a critical sensing technology poised to play a vital role in future intelligent and ubiquitous communication systems. Despite the development of numerous mature super-resolution algorithms, the inherent end-fire effect problem in fixed antenna arrays remains inadequately addressed. This work proposed a novel array architecture composed of fluid antennas. By exploiting the spatial reconfigurability of their positions to equivalently modulate the array steering vector and integrating it with the classical MUSIC algorithm, this approach achieved high-precision DOA estimation. Simulation results demonstrated that the proposed method delivers outstanding estimation performance even in highly challenging end-fire regions.
Abstract:Multimodal Large Language Models (MLLMs) have empowered embodied agents with remarkable capabilities in planning and reasoning. However, when facing ambiguous natural language instructions (e.g., "fetch the tool" in a cluttered room), current agents often fail to balance the high cost of physical exploration against the cognitive cost of human interaction. They typically treat disambiguation as a passive perception problem, lacking the strategic reasoning to minimize total task execution costs. To bridge this gap, we propose ESearch-R1, a cost-aware embodied reasoning framework that unifies interactive dialogue (Ask), episodic memory retrieval (GetMemory), and physical navigation (Navigate) into a single decision process. We introduce HC-GRPO (Heterogeneous Cost-Aware Group Relative Policy Optimization). Unlike traditional PPO which relies on a separate value critic, HC-GRPO optimizes the MLLM by sampling groups of reasoning trajectories and reinforcing those that achieve the optimal trade-off between information gain and heterogeneous costs (e.g., navigate time, and human attention). Extensive experiments in AI2-THOR demonstrate that ESearch-R1 significantly outperforms standard ReAct-based agents. It improves task success rates while reducing total operational costs by approximately 50\%, validating the effectiveness of GRPO in aligning MLLM agents with physical world constraints.
Abstract:The structure of topology underpins much of the research on performance and robustness, yet available topology data are typically scarce, necessitating the generation of synthetic graphs with desired properties for testing or release. Prior diffusion-based approaches either embed conditions into the diffusion model, requiring retraining for each attribute and hindering real-time applicability, or use classifier-based guidance post-training, which does not account for topology scale and practical constraints. In this paper, we show from a discrete perspective that gradients from a pre-trained graph-level classifier can be incorporated into the discrete reverse diffusion posterior to steer generation toward specified structural properties. Based on this insight, we propose Classifier-guided Conditional Topology Generation with Persistent Homology (CoPHo), which builds a persistent homology filtration over intermediate graphs and interprets features as guidance signals that steer generation toward the desired properties at each denoising step. Experiments on four generic/network datasets demonstrate that CoPHo outperforms existing methods at matching target metrics, and we further validate its transferability on the QM9 molecular dataset.
Abstract:While thinking-aware generation aims to improve performance on complex tasks, we identify a critical failure mode where existing sequential, autoregressive approaches can paradoxically degrade performance due to error propagation. To systematically analyze this issue, we propose ParaBench, a new benchmark designed to evaluate both text and image output modalities. Our analysis using ParaBench reveals that this performance degradation is strongly correlated with poor alignment between the generated reasoning and the final image. To resolve this, we propose a parallel multimodal diffusion framework, MMaDA-Parallel, that enables continuous, bidirectional interaction between text and images throughout the entire denoising trajectory. MMaDA-Parallel is trained with supervised finetuning and then further optimized by Parallel Reinforcement Learning (ParaRL), a novel strategy that applies semantic rewards along the trajectory to enforce cross-modal consistency. Experiments validate that our model significantly improves cross-modal alignment and semantic consistency, achieving a 6.9\% improvement in Output Alignment on ParaBench compared to the state-of-the-art model, Bagel, establishing a more robust paradigm for thinking-aware image synthesis. Our code is open-sourced at https://github.com/tyfeld/MMaDA-Parallel
Abstract:While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
Abstract:We propose TraceRL, a trajectory-aware reinforcement learning framework for diffusion language models (DLMs) that incorporates preferred inference trajectory into post-training, and is applicable across different architectures. Equipped with a diffusion-based value model that enhances training stability, we demonstrate improved reasoning performance on complex math and coding tasks. Besides, it can also be applied to adapt block-specific models to larger blocks, which improves sampling flexibility. Employing TraceRL, we derive a series of state-of-the-art diffusion language models, namely TraDo. Although smaller than 7B-scale AR models, TraDo-4B-Instruct still consistently outperforms them across complex math reasoning tasks. TraDo-8B-Instruct achieves relative accuracy improvements of 6.1% over Qwen2.5-7B-Instruct and 51.3% over Llama3.1-8B-Instruct on mathematical reasoning benchmarks. Through curriculum learning, we also derive the first long-CoT DLM, outperforming Qwen2.5-7B-Instruct on MATH500 with an 18.1% relative accuracy gain. To facilitate reproducible research and practical applications, we release a comprehensive open-source framework for building, training, and deploying diffusion LLMs across diverse architectures. The framework integrates accelerated KV-cache techniques and inference engines for both inference and reinforcement learning, and includes implementations of various supervised fine-tuning and RL methods for mathematics, coding, and general tasks. Code and Models: https://github.com/Gen-Verse/dLLM-RL